Stoichiometry Calculation Practice Worksheet

1. Calculate the number of moles of NaOH that are needed to react with 500.0 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ according to the following equation:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

ANS: 10.19 mol
2. Calculate the mass of NH_{3} that can be produced from the reaction of 125 g of NCl_{3} according to the following equation:

$$
\mathrm{NCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+3 \mathrm{HOCl}
$$

ANS: 17.7 g
3. Identify the limiting reactant and determine the mass of CO_{2} that can be produced from the reaction of 25.0 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ with 75.0 g of O_{2} according to the following equation:

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

4. How many grams of SO_{2} are produced when 152 g of CS_{2} react with 48.0 g of O_{2} according to the following equation:

$$
\mathrm{CS}_{2}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}
$$

5. When 50.0 g of MgCO_{3} react completely with $\mathrm{H}_{3} \mathrm{PO}_{4}$, as shown below, 15.8 g of CO_{2} are produced. What is the percent yield for this reaction?

$$
2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{MgCO}_{3} \rightarrow \quad \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

ANS: 60.5\%
6. How many grams of $\mathrm{P}_{4} \mathrm{O}_{10}$ can be produced from the reaction of 52.9 g of KClO_{3} with excess phosphorous as shown below:

$$
\mathrm{KClO}_{3}(\mathrm{~s})+\mathrm{P}_{4}(\mathrm{~s}) \rightarrow \quad \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+\mathrm{KCl}(\mathrm{~s}) \quad \text { (unbalanced) }
$$

ANS: 36.8 g
7. Given the equation below, determine the limiting reactant, and calculate how many

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}(\mathrm{~s}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{Cu}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

8. When 50.0 g of MgCO_{3} react completely with $\mathrm{H}_{3} \mathrm{PO}_{4}$, as shown below, 15.8 g of CO_{2} is produced. Determine the theoretical and percent yield for this reaction?

$$
2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{MgCO}_{3} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

ANS: 26.1 g; 60.5\%
9. What mass of F_{2} is needed to produce 120.0 g of PF_{3}, as shown, if the reaction has a 78.1% yield?

$$
\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PF}_{3}
$$

ANS: 99.6 g

