SCIENTIFIC NOTATION

• Scientific Notation is a convenient way to express very large or very small quantities.

<u>General form:</u>

A x
$$10^n$$
 $1 \le A < 10$ $n = integer$

Using scientific notations:

• Changing between conventional and scientific notation:

7 5,000, ()00 changes to 7.5×10^7	(7 to the left)	
0.00642	changes to 6.42×10^{-3}	(3 to the right)	

- Addition and subtraction (NOT COVERED)
- Multiplication and division :
 - 1. Change numbers to exponential form.
 - 2. Multiply or divide coefficients.
 - 3. Add exponents if *multiplying*, or *subtract* exponents if *dividing*.
 - 4. If needed, reconstruct answer in *standard* exponential notation.

Examples:

1. Multiply 30,000 x 200,000

$$(3x10^4)(2x10^5) = 6x10^{(4+5)} = 6x10^9$$

2. Divide 60,000 by 0.003

$$\frac{6x10^4}{3x10^{-3}} = \frac{6}{3}x10^{[4-(-3)]} = 2x10^7$$

Follow-up Problems:

- 1. $(5.5 \times 10^{3}) (3.1 \times 10^{5}) =$
- 2. $(9.7 \times 10^{14})(4.3 \times 10^{-20}) =$

3.
$$\frac{2.6 \times 10^6}{5.8 \times 10^2} =$$

4.
$$\frac{1.7 \times 10^{-5}}{8.2 \times 10^{-8}} =$$

- 5. $(3.7 \times 10^{-6}) \times (4.0 \times 10^{-8}) =$
- 6. $(8.75 \times 10^{14})(3.6 \times 10^8) =$
- 7. $\frac{1.48 \times 10^{-28}}{7.25 \times 10^{13}} =$

ACCURACY & PRECISION

- For measurements to be useful, it is important that they be *precise* and *accurate*.
- Accuracy is closeness of a measurement to an external standard.
- *Precision* is *closeness* of a measurement to *another similarly obtained measurement*.

Two types of error can affect measurements:

- *Systematic errors*: those errors that are *controllable*, and cause measurements to be *either higher or lower than the actual* value.
- *Random errors*: those errors that are *uncontrollable*, and cause measurements to be *both higher and lower than the average* value.

Evaluate the accuracy and precision of each set of data shown below:

ERRORS IN MEASUREMENTS

Two kinds of quantities are used in science:

- *Counted or Defined*: exact numbers; no uncertainty (error)
- *Measured*: are subject to error; have uncertainty (error)

Uncertainty in Measurements:

- Every *measurement* has *uncertainty* because of instrument limitations, human error, and number of measurements.
- The uncertainty in a measurement appears in the last recorded digit.

$$\begin{array}{rl} 15 \pm 1 \mbox{ cm} & (14 \mbox{ cm} \mbox{ or} \ 16 \mbox{ cm}) \\ 15.3 \pm 0.1 \mbox{ cm} & (15.2 \mbox{ cm} \mbox{ or} \ 15.4 \mbox{ cm}) \end{array}$$

- An *uncertainty* of *one unit* is assumed in all measurements, unless otherwise specified.
- In reading a measurement scale, it is *wrong* to record *more than one estimated digit*.
- The *last* digit is the *estimated* one.

8.65 cm

8.6 cm

RECORDING MEASUREMENTS TO THE PROPER NO. OF DIGITS

What is the correct value for each measurement shown above?

a)	28 mL	(1 certain, 1 uncertain)
b)	28.2 mL	(2 certain, 1 uncertain)
c)	28.31 mL	(3 certain, 1 uncertain)

SIGNIFICANT FIGURES

- Scientists use *significant figures* to express the *precision* of a measurement.
- Significant figures are the number of certain and uncertain digits

Examples:

1

Determine the number of significant figures in each of the following measurements:

0.0 <mark>5082</mark> in	4 significant figures
41.0 °C	3 significant figures
14.303 m	5 significant figures
0.000 <mark>25</mark> L	2 significant figures
150000 mg	ambiguous (should be written in scientific notation)
$1.5 \text{ x } 10^5 \text{ mg}$	2 significant figures
$1.50 \ge 10^5 \text{ mg}$	3 significant figures
$.500 \text{ x } 10^5 \text{ mg}$	4 significant figures

SIGNIFICANT FIGURES IN CALCULATIONS

Multiplication and Division:

- The measurement with the *least certainty* limits the certainty of the *results*; or
- The answer must contain the *same* number of *significant figures* as in the measurement with the *least number* of significant figures.

Examples:

5.02 (3 sf)	X	89.6 (5 s	565 sf)	X	0.10 : (2 sf)	= (45.0118 calculator an	= swer)	45 (2 sf)
	5.	.892 (4 sf)	÷	6	5.10 = (3 sf)	(c:	0.96590 alculator ansv	= wer)	0.966 (3 sf)

Addition and Subtraction:

• The answer must be rounded to the *same number of decimal places* as there are in the *measurement* with the *fewest decimal places*.

Examples:

83.5 + <u>23.28</u> 106.78 (calculator answer) 106.8 (rounded answer)	5.74 0.8233 <u>+2.651</u> 9.214 (calculator answer) 9.21 (rounded answer)
4.8 - <u>3.965</u> 0.835 (calculator answer) 0.8 (rounded answer)	$\frac{1.039 - 1.020}{1.039} = \frac{0.019}{1.039} = 0.0182868 = 0.018$

SIGNIFICANT FIGURES IN CALCULATIONS

Rounding Off Rules

When rounding to the correct number of significant figures:

- round down if the rounded digit is 4 or less.
- round up if the rounded digit is 5 or more

	3 sig. figs	2 sig. figs.
8.4234 rounds off to	8.42	8.4
14.780 rounds off to	14.8	15
3256 rounds off to	$ \begin{array}{r} 3260 \\ (3.26 \times 10^3) \end{array} $	3300 (3.3x10 ³)

Examples:

Perform the following operations to the correct number of significant figures:

1) 5.008 + 16.2 + 13.48 =

2)
$$\frac{3.15 \text{ x } 1.53}{0.78} =$$

3) 104.45 mL - 0.838 mL + 46 mL =

4)
$$\frac{4.0 \times 8.00}{16} =$$

MEASUREMENTS

- *Measurements* are made by scientists to determine size, length and other *properties* of matter.
- For measurements to be useful, a measurement *standard* must be used.
- A *standard* is an exact quantity that people agree to use for *comparison*.
- SI is the standard system of measurement used worldwide by scientists.

SI BASE UNITS

Measurement	Units	Symbol
Length	meter	m
Mass	kilogram	kg
Time	seconds	S
Temperature	kelvin	K
Amount of substance	mole	mol

Prefix	Symbol	Meaning	Multiplier
mega-	M	million	10^{6}
kilo-	k	thousand	10^{3}
hecto-	h	hundred	10^{2}
deca-	da	ten	10
			1
deci-	d	tenth	10 -1
centi-	с	hundredth	10^{-2}
milli-	m	thousandth	10^{-3}
micro-	μ	millionth	10^{-6}
nano-	n	billionth	10 ⁻⁹

SI PREFIXES

DERIVED UNITS

Measurement	Units	Symbol
Volume	liters	L
Density	grams/cc	g/cm ³

VOLUME

- *Volume* is a measure of the *amount of space* occupied by an object.
- Volume is a *derived* quantity, with units of cm^3 , m^3 , in^3 .
- The SI base unit of volume is Liter (L) which is equal to 1000 cm^3 .
- Volume of various *regular shapes* can be calculated as follows:

Cube

V = s x s x s

Rectangular	V=1 x w x h
solid	

Cylinder	$V = \pi x r^2$	X	h
----------	-----------------	---	---

Sphere	$V=\frac{4}{2}\pi r^3$	
	3	

DENSITY

• *Density* is the ratio of *mass* of an object to its *volume*.

Density =
$$\frac{\text{mass}}{\text{volume}}$$
 $d = \frac{m}{v}$

- *Density* is an *intensive* property (i.e. *independent* of the *amount* of matter).
- *Mass* and *volume* are examples of *extensive* properties (i.e. dependent on the amount of matter).
- *Density* is a measure of how *tightly packed* an object's mass is.

Examples:

- 1. A copper sample has a mass of 44.65 g and a volume of 5.0 mL. What is the density of copper?
 - m = 44.65 g $d = \frac{m}{v} =$ v = 5.0 mLd = ???
- 2. A silver bar with a volume of 28.0 cm^3 has a mass of 294 g. What is the density of this bar?
 - m =
 - $\mathbf{v} =$
 - d =

CONVERSION FACTORS

- Many problems in chemistry and related fields require a change of units.
- Any unit can be converted into another by use of the appropriate **conversion factor**.
- Any equality in units can be written in the form of a fraction called a **conversion factor**. For example:

• Sometimes a conversion factor is given as a percentage. For example:

Percent quantity:	18% body fat by mass		
Conversion factors:	$\frac{18 \text{ kg body fat}}{100 \text{ kg body mass}} \text{ or }$	100 kg body mass 18 kg body fat	Percentage

CONVERSION OF UNITS

- Problems involving conversion of units and other chemistry problems can be solved using the following step-wise method:
 - 1. Determine the intial unit given and the final unit needed.
 - 2. Plan a sequence of steps to convert the initial unit to the final unit.
 - 3. Write the conversion factor for each units change in your plan.
 - 4. Set up the problem by arranging cancelling units in the numerator and denominator of the steps involved.

conversion factor

Examples:

1. Convert 164 lb to kg (1 kg = 2.20 lb)

Step 1:	Given 164 lb Find kg		
Step 2:	lb Metric – English factor kg		
Step 3:	$\frac{1 \text{ kg}}{2.20 \text{ lb}} \text{ or } \frac{2.20 \text{ lb}}{1 \text{ kg}}$		
Step 4:	164 lb x $\frac{1 \text{ kg}}{2.20 \text{ lb}} = 74.5 \text{ kg}$		
onvert 5678 m to km			

2. Convert 5678 m to km.

Step 1: Given Find

Step 2 & 3:

Step 4: m x - km

3. How many centimeters are in 2.0 ft? (1 in=2.54 cm)

4. Bronze is 80.0% by mass copper and 20.0% by mass tin. A sculptor is preparing to cast a figure that requires 1.75 lb of bronze. How many grams of copper are needed for the brass figure?

UNITS RAISED TO A POWER

• When converting quantities with units raised to a power (e.g. cm³), the conversion factor must also be raised to that power. For example:

```
2.54 cm = 1 in
(2.54 cm)<sup>3</sup> = 1 in<sup>3</sup>
16.387 cm<sup>3</sup> = 1 in<sup>3</sup>
```

Examples:

1. A large pizza has a surface area of 110 in^2 . What is this area in cm²?

110 in² x
$$(\frac{2.54 \text{ cm}}{1 \text{ in}})^2 = 709.7 \text{ cm} \xrightarrow{\text{round to}} 710 \text{ cm}^2$$

2. How many cubic inches are there in 3.25 yd^3 ?

3. A classroom has a volume of 285 m^3 . What is this volume in cm³?

DENSITY AS A CONVERSION FACTOR

• Density of a substance can be used as a conversion factor between mass and volume. Problems below show some examples of this.

Examples:

1. If the density of gold is 19.3 g/cm³, how many grams does a 5.00 cm³ nugget weigh?

2. The gasoline in an automobile gas tank has a mass of 60.0 kg and a density of 0.752 g/cm³. What is the volume of the tank in cm³?

3. If the density of milk is 1.04 g/mL, what is the mass of 0.50 qt of milk? (1L = 1.06 qt)