REVIEW QUESTIONS

Chapter 1

1. Express each of the following numbers in scientific notation, with 3 significant figures:
a) $2,900,000$
2.90×10^{6}
b) 0.005865
5.87×10^{-3}
c) 0.000004563
4.56×10^{-6}
d) 410870
2. Perform the following operations with the correct number of significant digits:
a) $\frac{14.854-14.828 \mathrm{~g}}{3.852 \mathrm{~g}}=\frac{\mathbf{0 . 0 2 6}}{\mathbf{3 . 8 5 2}}=6.7 \times 10^{-3}$ or $\mathbf{0 . 0 0 6 7}$
b) $\frac{\left(6.626 \times 10^{-34}\right)\left(2.98 \times 10^{8}\right)}{4.73 \times 10^{6}}=4.17 \times 10^{-32}$
c) $\frac{\left(3.4 \times 10^{-8}\right)^{2}\left(2.55 \times 10^{28}\right)}{\left(8.2 \times 10^{6}\right)^{3}}=\frac{2 . \underline{9478 \times 10^{13}}}{5.514 \times 10^{20}}=\mathbf{5 . 3 \times 1 0 ^ { - 8 }}$
3. The following data was collected by four different students while determining the mass of an unknown sample. The true value is 6.72 g .
A) $\quad 6.71 \mathrm{~g}, 6.75 \mathrm{~g}, 6.70 \mathrm{~g}$
6.72 g
B) $\quad 6.56 \mathrm{~g}, 6.76 \mathrm{~g}, 6.84 \mathrm{~g}$
6.72 g
C) $\quad 6.50 \mathrm{~g}, 6.48 \mathrm{~g}, 6.52 \mathrm{~g}$
6.50 g
D) $\quad 6.41 \mathrm{~g}, 6.72 \mathrm{~g}, 6.55 \mathrm{~g}$
6.56 g
a) Which set of data has high accuracy, but low precision? \qquad
B
b) Which set of data has low accuracy, but high precision? \qquad
c) Which set of data has good accuracy and precision? \qquad
4. If an oxygen molecule is moving at $4.78 \times 10^{4} \mathrm{~cm} / \mathrm{s}$, what is its speed in $\mathrm{mi} / \mathrm{hr}$?

$$
\frac{4.78 \times 10^{4} \mathrm{em}}{1 \mathrm{~s}} \times \frac{1 \mathrm{~km}}{10^{5} \mathrm{em}} \times \frac{1 \mathrm{mi}}{1.609 \mathrm{~km}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{hr}}=1.07 \times 10^{3} \mathrm{mi} / \mathrm{hr}
$$

5. If the gasoline in a full 20.0-gallon tank weighs 116 lb , what is the density of gasoline in g / mL ?

$$
\frac{116 \mathrm{Hb}}{20.0 \mathrm{gat}} \times \frac{453.6 \mathrm{~g}}{1 \mathrm{Hb}} \times \frac{1 \mathrm{gat}}{3.786 \mathrm{~L}} \times \frac{1 \mathrm{~L}}{10^{3} \mathrm{~mL}}=0.695 \mathrm{~g} / \mathrm{mL}
$$

6. Dry sand has a density of $1.5 \mathrm{~g} / \mathrm{cm}^{3}$. A child's sandbox measuring 4.0 ft by 5.0 ft is filled with sand to a depth of 6.0 in . What is the mass of the sand in kg ?

$$
\begin{aligned}
& \text { Length }=5.0 \mathrm{ft} \times \frac{12 \mathrm{it}}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=152 \mathrm{~cm} \\
& \text { Width }=4.0 \mathrm{ft} \times \frac{12 \mathrm{im}}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{im}}=1 \underline{2} \mathrm{~cm} \\
& \text { Depth }=6.0 \text { in } x \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=15.2 \mathrm{~cm} \\
& \text { Volume }=1 \underline{152} \mathrm{~cm} \times 1 \underline{22} \mathrm{~cm} \times 1 \underline{15} .2 \mathrm{~cm}=2.8 \times 10^{5} \mathrm{~cm}^{3} \\
& \text { Mass }=2.8 \times 10^{5} \mathrm{~cm}^{3} \times \frac{1.5 \mathrm{~g}}{1 \mathrm{em}^{3}} \times \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}=420 \mathrm{~kg}
\end{aligned}
$$

7. A cylindrical glass tube 15.0 cm in length is filled with ethanol. The mass of the ethanol needed to fill the tube is found to be 9.64 g . Calculate the inner diameter of the tube in cm , if the density of ethanol is $0.789 \mathrm{~g} / \mathrm{mL}$.

Vol. of cylinder $=$ Vol. of ethanol $=9.64 \mathrm{~g} \times \frac{1 \mathrm{~mL}}{0.789 \mathrm{~g}}=12.22 \mathrm{~mL}$
Vol. of cylinder $=\pi \mathbf{r}^{\mathbf{2}} \mathbf{h}$

$$
\begin{aligned}
& \mathrm{r}=\sqrt{\frac{\mathrm{V}}{\pi \mathrm{~h}}}=\sqrt{\frac{12.22 \mathrm{~cm}^{3}}{\pi(15.0 \mathrm{~cm})}}=0.509 \mathrm{~cm} \\
& \text { diamter }=2 \mathrm{r}=2(0.509 \mathrm{~cm})=1.02 \mathrm{~cm}
\end{aligned}
$$

8. A antibiotic suspension for infants contains 80 mg of antibiotic per 0.80 mL of suspension. The recommended dose for this antibiotic is $15 \mathrm{mg} / \mathrm{kg}$ of body weight. How many mL of suspension should be given to an infant weighing 14 lb ?

$$
14 \mathrm{Hb} \times \frac{453.6 \mathrm{~g}}{1 \mathrm{Hb}} \times \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}} \times \frac{15 \mathrm{mg} \text { antibietic }}{1 \mathrm{~kg}} \times \frac{0.80 \mathrm{~mL} \text { suspension }}{80 \mathrm{mg} \text { antibiotic }}=0.95 \mathrm{~mL}
$$

9. A fish tank is 20.0 in long, 20.0 in deep and 10.0 in high. What is the maximum volume of water, in liters, that the fish tank can hold?

$$
\begin{aligned}
& V=(20.0 \mathrm{in})(20.0 \mathrm{in})(10.0 \mathrm{in})=4.00 \times 10^{3} \mathrm{in}^{3} \\
& \mathrm{~V}=\left(4.00 \times 10^{3} \mathrm{im}^{3}\right) \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{im}}\right)^{3}=6.55 \times 10^{4} \mathrm{~cm}^{3} \\
& \mathrm{~V}=\left(6.55 \times 10^{4} \mathrm{em}^{3}\right) \times\left(\frac{1 \mathrm{~L}}{10^{3} \mathrm{~cm}^{3}}\right)=65.5 \mathrm{~L}
\end{aligned}
$$

10. Table salt contains 39.33% by mass sodium. The FDA recommends that adults consume less than 2.40 g of sodium per day. A particular snack contains 1.25% of salt in the mix. What mass of the snack mix can an adult consume and still be within FDA limit?

$$
2.40 \mathrm{~g} \operatorname{Nax} \frac{100 \mathrm{~g}_{\text {salt }}}{39.33 \mathrm{~g} \mathrm{Na}} \times \frac{100 \mathrm{~g} \text { mix }}{1.25 \mathrm{~g} \text { salt }}=488 \mathrm{~g} \mathrm{mix}
$$

